Prediction of the Judd–Ofelt Parameters of Dy3+-Doped Lead Borosilicate Using Artificial Neural Network

نویسندگان

چکیده

Developments in the field of glass research necessitate mimicking optical properties materials before melting raw materials, as they are very expensive nowadays. An artificial neural network (ANN) was utilized during this work to train and predict Judd–Ofelt parameters various glasses, such ?2, ?4 ?6, radiative lifetimes many different types rare-earth-doped glasses. The optimized ANN architecture for forecasting were found be near experimentally measured parameters. Then, conferred model employed some newly prepared borosilicate Therein, a new system 0.25 PbO–0.2 SiO2–(0.55 ? x) B2O3–x Dy2O3, order employ melt-quenching technique. parameter results theory, well ?6 showed that supplementation Dy2O3 switched BO4 units BO3 with oxygens non-bridging atoms, thus weakening frameworks. Therefore, it is important use an several glasses luminescent materials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

Prediction of Cohesive Sediment Erosion Rate and Analyzing the Effective Parameters Using Artificial Neural Network

Transferring mechanic of cohesive sediments are different from non-cohesive sediments. For determining the erosion rate of non-cohesive sediments, physical parameters such as average diameter and density are used, such as average diameter and density. Due to the nature of the cohesive sediments, their erosion rates are determined interrelated with the shear stress of the bed with fixed coeffici...

متن کامل

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

متن کامل

Prediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network

Introduction:  It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure.   Materials & Methods: This study utilized a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics11071045